Faculty, Staff and Student Publications

Language

English

Publication Date

11-4-2025

Journal

BMC Cancer

DOI

10.1186/s12885-025-15104-w

PMID

41188812

PMCID

PMC12584455

PubMedCentral® Posted Date

11-4-2025

PubMedCentral® Full Text Version

Post-print

Abstract

Multiple myeloma (MM) is a neoplasm of antibody-producing plasma cells and is the second most prevalent hematological malignancy worldwide. Development of drug resistance and disease relapse significantly impede the success of MM treatment, highlighting the critical need to discover novel therapeutic targets. In a custom CRISPR/Cas9 screen targeting 197 DNA damage response-related genes, Protein Arginine N-Methyltransferase 1 (PRMT1) emerged as a top hit, revealing it as a potential therapeutic vulnerability and survival dependency in MM cells. PRMT1, a major Type I PRMT enzyme, catalyzes the asymmetric transfer of methyl groups to arginine residues, influencing gene transcription and protein function through post-translational modification. Dysregulation or overexpression of PRMT1 has been observed in various malignancies including MM and is linked to chemoresistance. Treatment with the Type I PRMT inhibitor GSK3368715 resulted in a dose-dependent reduction in cell survival across a panel of MM cell lines. This was accompanied by reduced levels of asymmetric dimethylation of arginine (ADMA) and increased arginine monomethylation (MMA) in MM cells. Cell cycle analysis revealed an accumulation of cells in the G0/G1 phase and a reduction in the S phase upon GSK3368715 treatment. Additionally, PRMT1 inhibition led to a significant downregulation of genes involved in cell proliferation, DNA replication, and DNA damage response (DDR), likely inducing genomic instability and impairing tumor growth. This was supported by Reverse Phase Protein Array (RPPA) analyses, which revealed a significant reduction in levels of proteins associated with cell cycle regulation and DDR pathways. Overall, our findings indicate that MM cells critically depend on PRMT1 for survival, highlighting the therapeutic potential of PRMT1 inhibition in treating MM.

Keywords

Protein-Arginine N-Methyltransferases, Humans, Multiple Myeloma, Cell Survival, Cell Line, Tumor, Repressor Proteins, Arginine, Gene Expression Regulation, Neoplastic, CRISPR-Cas Systems, Cell Cycle, DNA Damage

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.