Faculty, Staff and Student Publications
Publication Date
8-29-2023
Journal
Cell Death & Disease
Abstract
Persistence of leukemic stem cells (LSCs) is one of the determining factors to acute myeloid leukemia (AML) treatment failure and responsible for the poor prognosis of the disease. Hence, novel therapeutic strategies that target LSCs are crucial for treatment success. We investigated if targeting Bcl-2 and peroxisome proliferator activated receptor α (PPARα), two distinct cell survival regulating mechanisms could eliminate LSCs. This study demonstrate that the Bcl-2 inhibitor venetoclax combined with the PPARα agonist chiglitazar resulted in synergistic killing of LSC-like cell lines and CD34+ primary AML cells while sparing their normal counterparts. Furthermore, the combination regimen significantly suppressed AML progression in patient-derived xenograft (PDX) mouse models. Mechanistically, chiglitazar-mediated PPARα activation inhibited the transcriptional activity of the PIK3AP1 gene promoter and down-regulated the PI3K/Akt signaling pathway and anti-apoptotic Bcl-2 proteins, leading to cell proliferation inhibition and apoptosis induction, which was synergized with venetoclax. These findings suggest that combinatorial Bcl-2 inhibition and PPARα activation selectively eliminates AML cells in vivo and vitro, representing an effective therapy for patients with relapsed and refractory AML.
Keywords
Humans, Animals, Mice, PPAR alpha, Phosphatidylinositol 3-Kinases, Disease Models, Animal, Stem Cells, Acute myeloid leukaemia, Apoptosis
Included in
Bioinformatics Commons, Biological Phenomena, Cell Phenomena, and Immunity Commons, Biomedical Informatics Commons, Medical Cell Biology Commons, Oncology Commons
Comments
Associated Data
PMID: 37644011