Faculty, Staff and Student Publications

Publication Date

12-2-2022

Journal

Science Advances

Abstract

Hyperphosphorylated microtubule-associated protein tau has been implicated in dementia, epilepsy, and other neurological disorders. In contrast, site-specific phosphorylation of tau at threonine 205 (T205) by the kinase p38γ was shown to disengage tau from toxic pathways, serving a neuroprotective function in Alzheimer's disease. Using a viral-mediated gene delivery approach in different mouse models of epilepsy, we show that p38γ activity-enhancing treatment reduces seizure susceptibility, restores neuronal firing patterns, reduces behavioral deficits, and ameliorates epilepsy-induced deaths. Furthermore, we show that p38γ-mediated phosphorylation of tau at T205 is essential for this protection in epilepsy, as a lack of this critical interaction reinstates pathological features and accelerates epilepsy in vivo. Hence, our work provides a scope to harness p38γ as a future therapy applicable to acute neurological conditions.

Keywords

Animals, Mice, Epilepsy, Seizures, Phosphorylation, Alzheimer Disease, Disease Models, Animal

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.